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ABSTRACT

/6386

Resonant and fluoresceht scattering in plane-parallel planetary
atmospheres is studied. Chandrasekhar's quadrature approximation method
is extended to the radiative transfer equations of resonant and fluores-
cent emissions with coupling among transitions to obtain thelr intensities
at arbitrary depth and direction in planetary atmospheres. The theory |
is applied for obtaining line intensities in the caseg where the appréxim
mations of the single scattering and the assumption of semil-infinite

RKUTHOR

atmosphere are valild respectively.

INTRODUCTION
Resonant and fluorescent scattering of solar radiation is one of
the important mechanismg of formastion of emission lines and bands in
planetary atmospheres. In the earth's upper atmosphere it is actually
observed &s day- or twilight- airglow. Planetary albedos may contain
some contribution from resonent and fluorescent components. In many
cases 1t 1s difficult to observe such resonant or fluorescent emlissions,

since they are usually hidden under the strong background continuum due
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to ground reflection and Rayleigh scattering in the lower dense atmosphere.
This is the reason why the measurements of telluric socdium and H; emissions
are restricted during the twilight time. However, recent developments in
space vehicles enable us t0 measure dayglow emissions in the hligh altitudes
where they are free from contamination by scattered light. Other possi-
bilities would be to observe resonant and fluorescent emissions in the
middle -and far-ultraviolet regions where various absorptive constituents

of the planetary atmosphere prevent the reflections of continuum from
planetary surface and underlying dense atmosphere. In such regions the
resonance and fluorescence from the upper atmosphere can be detected even
looking towards the planet during daytime.

Such a fortuitous condition may be found for the Schumaun-Runge day-
glow of molecular oxygen in the middle-ultraviolet. 1In the earth's
atmosphere the height at which fluorescence may be significant falls be-
tween 30 km and 110 km., On the other hand, atmospheric ozone around the
30 km level strongly absorbs.the ultraviolet radiations near 2500 K, 80
that the ground reflection and Rayleigh scattering of solar ultraviolet

radiation from underlying layers is effectively prevented from contamin-

.

% ating the Schumann-Runge dayglow. (Barth, 1963; Barth and Tohmatsu, 1963).

4 nfﬁ*g’é

Accordingly, one may approach the mechanisms of planetary resonance

Ho3-gig

=é§ and fluorescence from two different directions (Cf. Fig. 1):

(1) Resonant or fluorescent spectra as seen at the top and bottom

of the scattering layer;

(2) Radiation intensity and emissivity at a particular point inside

the layer.

The first category will be found in the work by Chamberlain and
Sobouti (1962). They showed that the problem of planetary fluorescence

can be formulated in the light of the theory of diffuse reflection from
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a plane-parallel atmosphere of finite or semi-infinite optical thickness..
The solutions are then obtained in terms of H-, X- and Y- functions and
their derivatives. This approach will have a wide applicability in studying
planetary fluorescent albedos and telluric dayglow. On the other hand,

the latter category which is more general in character, is of greater
importance for interpreting the results of rocket photometry of dayglow
emissions. This kind of approach will be sulteble for deducing the alti-
tude distribution of a fluorescent species from its intensity variation
with height.

It may be readily observed that the basic 1deas of the above two
categories are closely related to each other, as one can see in Chand-
rasekhar's treatise on ﬁadiative Transfer (1950) referred to ag R. T. in
this paper. According to Chandrasekhar, the source funection and specific
intensity can be approximated to arbitrary accuracy by using the quadrature
expansion technique, and the H, ¥~ and Y- functions are explicitly given
as ultimete solutions in the 1limit of infinite approximation. This pro-
cedure masy be applied also to more complicated planetary resonance and
fluorescence problems. One complication, which is important in an actual
problem, is the coupling of transitions as discussed by Sobouti (1962). The
effect of coupling appears when the fluorescent system has more than one
ground state. 8Since the temperature of plenetary atmospheres is too low
for thermal excitation of the electronic transitions, most of the couplings
will be found in the vibrational and rotational structures of molecules
and in spin substates of atoms.

Sobouti (1962) developed the theory of diffuse reflection and trans-
mission with coupling among treansitions and showed that the expressions for

diffusely reflected and transmitted intensities can be formulated in terms
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of generalized H-, X- and Y- functions. His study essentially belongs to.
category (l), as stated sbove. The corresponding problem, which deals
with the effect of coupling among transitions, still existe for category
(2). The first section of this paper corresponds to this problem. There
we shall discuss radiative transfer in a coupled resonant and fluorescent
system for rather idealized cases. In Sec. II 1t will be snown that the
case where there 1s continuous absorption can be converted to the standard
problem by changing variables and constants. Sometimes we are more interested
in the line or band intensity integrated over frequency rather than the
line contour itself. It 1s often true that the observational data do not
have sufficlent accuracy to deduce line shapes. Sections III and IV are the
theorles of line intensity.in the single scattering approximation and for
the semi-~infinite atmosphere respectively. This study corresponds to the
theory of stellar absorption lines for the resonant and fluorescent emissions.
Sec. V corresponds to the case where the excited state of a fluorescent
system 1s populated by processes other than the resonant éxcitations from
lower states; that is, the case of a planetary atmosphere wlth internal
excitation sources. Tney may be either chemlical or thermal excitations or
cascading transitions from higher energy levelé.
I. Basic Equations of Radiative Transfer for Coupled Resonant and
Fluorescent Lines and Their Solutions

1. Basic Equations

Let us consider & group of the lines which arise in the absorption
processes from the ground state Xmé X, (m=1, 2, ..., 8) to the exclted
state APG A which is common to all of the Xm's and the emisslon processes
from Ap to the final state Bl € B, (1: 1, 2, ..., s). "The line is called

elther resonant or fluorescent according to whether Bléx or B¢ X (cf. Fig. 2).
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For mathematical convenience we shall make no distinction between the
states belonging X and B, namely we put B & X. This procedure does not
specialize the problem, since the fluorescent radiations are free from the
reabsorption process so that they may be treated as the "resonant lines with
zero absorption coefficient”. Then, since the excited state A.p is fixed,
one can specify the quantities related to the transition XE*AP-’XI by
using only one suffix m or J& For instance, the absorption coefficient and

- are written as X, and Aom
transition probability for the transition, Xﬁpr respectively; likewlse,
the specific intensity for the transition, Ai*'xl, as ;‘ .

In formulating the radiative transfer equations, the following condi-
tions will be assumed ihitially:

(i) The scattering is isotropic and coﬁerent;

(11) The scattering atmosphere is passive to the external radiation
sources, and has no internal radistion sources beside the co-
herent re-emission of the absorbed radiation;

(111) The excited state Ap can be populated only through absorption
processes Xm-)Ap, (m=1, 2, ..., 8), but not through the cascade
transitions from the higher excited levels;

(iv) There is no continuous absorption other than the pertinent
resonant absorption.

The cases where these conditions are not satisfied will be discussed in

the later sections. In the plane-parallel atmosphere, the radiation fileld

18 governed by a set of integro-differential equations (8obouti, 1962),
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Z,t = 2 [n.n, c0dz,
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Z
is the "grand" optical depth, ‘n'nm( z) and z being the molecular absorption

coefficient, number density in the m-th state, and height respectively;

»y

y X -
£. Sul (3)

ms/
the specific abeorption coefficient of the f-th component ;

a, = Ay
! f(A:.M,.) ’ (%)

: L X1
the albedo of the [ -th component, AI’ Anr and dm being Einstein's transi-

tion probabilities and deactivation rate of/.;'t'he Ap state respectively:

Fo = |cos 6], ® = casﬂ)
(5)

directional cosines of the incident flux and observing line of sight

respectively;
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incident radiation flux at the top of the atmosphere;

and

It w),
(1

»y
the specific intensity of the l—th component at depth, t and in the
direction, /l .
In this paper we will‘ use the following purely non-dimensional

equations

dIy(t’: ) ¥ v . _
e R A

e
= JZ{ /j (t) p) du’ + &, Z,f f e"/‘.’
mg/ bl (8)

(d=1,223 .,5),

where

v x#
fp = A ™ »
2, % P . (9)

me)
is the specific incident flux for the m-th component, and Il (t ,fl) is

given in units of Z'ff /4-'3' Evidently, we have
"X 1

Z fﬂ = 19 (lO)
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One merit of using (8) for (1) will be that, if f; 1s replaced by
nE;, in rayleighs/cm? / cmfl, the solution will be obtalned in units of
rayleighs/cm-l. Alternatively, if f;’= 1, while f;" n = 0, one can obtain
the response functions for the unit input of the n-th radietion because
of the linearity of the equations. The suffix ¥ which indicates the wave
number dependence of quantitites will hereafter be omitted so long as no
confusion is possible.

In analog to Eq. (90) of R. T.y Chapter I, the apparent solutions of
(8) which satisfy the boundary conditions at both the top (t = 0) and

bottom (t = to) of the scattering atmosphere are,

A
g,zt, ) = J ) e M v U-‘?’-E ,
/u (11a)
and
_ﬂ (t-t ,{t
_Zl(t f“) /‘Jl(t)e f‘ ,
(f=12.8 .5 0¢ < /), (11b)

where ql(t) is the average intensity of the‘[-th component (in units of

217-' / 4x ) at depth t, defined by

e s
- t)
T, = 5 (I, +J ) o
with
11,..
I o= Lkt P

s

(13)



and

!
s
S ;s ’ ’
Jr =+ L k| Latp)dp
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In the context of Chandrasekhar's quadrature epproximastion method,

(R. T., p. 80) J°(t) may be approximated by a quadrature,

P +n I
]';t) N %Z;,Zaj -

mer sz-n

(15)
where aj and Imd are respectively the Christoffel number and specific
intensity which are assogiated to the characteristic root, /‘3’

(j =%1, £, ..., #n), of the Legendre polynominals, Pen( fﬁ) = 0.
The following relations will be used frequently in the later dis-
cussions (R. T., p. 62):
& = a-; , (4 =4/ 22 -, zn). (16)
K= -p (4 =2, %2, -, £7); (17
and
s auf _ _2lte
2 G = , (< an-1)
jen } adl

(18)

where

/ cf Z ‘s even

0, if, fisedd (19)
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Now, in terms of I 5 Eq. (8) may be substituted by an equivalent

set of 2sn llnear differentlal equations,

s L2
I i
"/"&dl *"1 Z, H‘Z +@Zfa‘fme /‘0

t ar '-n
) ‘7 (20)

Since these equatlons are linear with respect to Ili’ their solutions
comprise one set of particular solutions and 2sn sets of the solutions

for the associated homogeneous equations,

._-/L.il._t!.!-ff.[[‘ = 5 Z* Zd. w-j

me/ ‘73-” (21)

2. Particular Solutions

Since right hand side of Egq. (20) is regarded to be & product of

and the "grand" source function,

Jt) = J(U * J e¢) | __/f;:t
c 15 hm 2 4 Inj + Shue Fo (22)
‘ms/ ”- K

which is a function of only t, a particular solution of %/i is easily
obtained as
K 4
I;z=?2f7{7"""7"e"- |
X 1 2
4 l‘oh (23)

where-‘y;, (m=1, 2, ..., 8) 18 a constant defined by
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. / /

1}

Y
*
3
)

s ,h
i W37 /= 3Ty 53— (o)
» J /*'/2:;':' ne ;':*//_(_/_‘iﬁ:vj

This expression may be compared to R. T., p. 82, Eq. 90. ,K,‘h

3. Solutions of the Assoclated Homogeneous System

The solutions of the associated homogenecus system, (21) are linear

combinations of 2sn distinct fundamental solutions,

/ - %,
I!.—_:a__-! eﬂl

. , (25)
(d=12,+.5 1= 2l £L 2N,

o = 21, £2, . £5n),
where (26)
“d = - "’“ ,

stands for one of the roots of the assoclated Wronskian equation,

s E +n a_j.
™
) 2 Z A
=/ j=°" / + ._.L_.. !
in (27)
or
*n

s @'
/= Z/ G"’ /‘"d 2
oy g4 _(_L__)
2 (272)
(cf. R. T., p. 81)
In fact, it may be shown that Eq. (27) allows 2sn distinct real

solutions
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'. 4 o

= — k- (o= 2/ 2 =, £SN),
£, koo, (28)

so that the general solutions of (21) can be given by 2sn linear combin-

ations of (25); namely

Iy = Z‘” le ——2 ;&

1 ox -SSP / + /—“———
fg . y (29)
where L , 's are 2sn constants.
d s
However, in the conservative cage*, 1,e., Z 5,., = / while km;é 0
. ey
for all m,
i:t-sn = 0, (30)
provide doubly degenerate zeros of (27).
In this case, 1t may be geen readily that
v
I, = %yt &),
#, £ (31)

and

I
&
8

I.lc' £ 7

(32)

* We shall define as the conservative system that system in which all the

components are resonant (k ;é O) andZu = 1 is satisfied. The system will
me/
not be conservetive even if Z 5 = 1 when there exists any fluorescent
mey .
component, since for this component, km = O,
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| where b and Q are constants*, are two independent solutions to be added to
| other 2sn-2 solutions given as (29). Therefore, in the conservative case,

the general solutions (29) should be replaced by

sn-1
S §g M / —kyt
Ilb il v b(t+ zl—)-rQ-tZ L o €

W c-Sn+/ /+
%y

" (31)*
L.,  Complete Solutions

From (23) and (31) one can obtain the complete solutions of (20) for

the conservative case as,

5 | ' sn-l At
Iy = & $(t+ & 4
“ % [ptrg)rarl Les 2
£
s L e
+ Z *.,,._fvn—yan /‘[ Aqn e /" °
M=/ !+ —

/“o‘ﬁj ' (32)

The solutions for non-conservative cases have the same form as (32)
with b = Q = 0, and the summation over o extended from -sn to +sn. We shall
hereafter refer to Eq. (32) as the standard solutions, since the non-conserva-
tive cases are deslt with in quite analogous fashlon, merely dropping the
terms with b and Q. This equation may be compared to R. T., p. 82, Eq. 92.

Substitution of (32) in (22) results in the grand source functlon.

* Chandresekhar excludes b outside of the brackets,[ ], so that his bQ

and de's are the present Q and L"s respectively.
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sn-/ s £
Jt) = bt + Q+ 2 L«—ﬁdt O oY Fo '

==sHt+/ me)

. (33)
(c£. R. T., p. 196, Eq. TT)

5. Net Flux and Total Reflection and Transmission

Similarly, the net flux of the whole fluorescent system* ig obtained

S
(in units of chF," ) as

~ -y
!

d Lt 1)
wht) = 3 2w | L

L= C -t
(’%‘{ ) le, 'Z:_n Ill./l Q
s st ] -—é{t
- Lp £ 4 Do — / 22
B J eZ é (é: £ )o(--:ul f
s - %t
+ 1L [’*(5’*’1”)7’" fue
mey =l _
§ ‘ (34)
o

* The external part of flux, —Z‘f” e f"’ is excluded.
me;
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The total reflection from the top 1s then,

o ref = + ’”’F(o) < Snet Ld
- 'bz”f+(zzs,-,)z "
&=/ €= ofs-SNt/

+f 3 _,[f-(leiz-/)7 ] -

Likewise, the totel transmission from the bottom is

/r};‘ra'”g = - '7rF (to
bZ - (33 5§ L ke,
0 — /) Z €
2= “ é=, L==Snt/ i“
s < "tt
-K 2 [/- (Z&Iz_ /)'Y,.}f.e Fot
m=) 2= v .
s (36)
Especially for the conservative system, gince 2 z& = / , one obtains
L=
S I— <
’71';; = 4 £ ”
7S beé A e a%‘,{ (37)
and
s s Ao
) ¢,
%gms="3{b2;‘% ZTCCF'"
€=/ 4 'hltl (38)
Whence

R4
'7";¢f+”"'/rmn:=/‘ozf’"(’ C ’% )

i (39)

This relation implies that the total amount of radiation emergent

from the layer balances exactly the total amount of radiations absorbed.
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are positive and never exceed the

Further, since both nF
ref trans

and oF
total amount of radiation absorbed we have from (37), (38) and (39).

R .
_fn e /o ° 25 fm
o B ¢ (b & apr, B2

7 $ &

L=1 Ry y 1!;
=) (40)

and

(k1)

o~
IN
Q

6. Boundary Conditions
7
The 2en constants, b, Q, and Ly 's in Eq. (32) are to be determined

so that %li's satisfy the boundary conditions ét two boundaries, namely,

[Il,—i 1t=o =0 sn-t /
e 4
—b =— +Q + L Ko
ﬁl i,z.sqfl “ [ - %
]
1r\th =0
+ Zﬂm—F | - ﬁ,'ﬁw ’ (h2a)
and f:1tl
[Leilpee, =0 St Ikt
£y s @) L — k¢ 7
b (-t"* ﬁl) de-Snti /+ ‘ﬁ!
P L TREL
+ /, » '™ B AT
m=z) | + 'i&sgj;

(£=12, .
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T. Standard Solutione for Specific Intensities

Once the b, Q and Ly 's are determined by (42a, b), the specific in-

tensities can be derived from the grand source function (33). Since

sn~| i( {u t
\]' A&%JQ%) = 2&2 {1‘t + ‘2 23 Ild e t4'¢23‘£;f? X
ol ==-snt! ’
(43)

integration of (lla, b) ylelds,

Lyct,ep) = ,e{ [ +t) +t)—£”’ t)x

+ Q [ — F(tn-t) ] + ﬁ
-1 &4‘ £ to’f’ '£t
+ SZ": L. [;ﬁ‘—t ;(’L i) 4 }f
de;snﬂ | + —;:"' (& *')t*.
+ 4253 15.:fi7"73- ! [ﬁlE:L (: 4 ’e’ ti' ;; koF -]
m = ! + F’oﬂ‘e

(4ha)

and &;
_u) = Be 2 _”txﬂ‘
Iyet,-p) h{blt-:‘ (: e ¥
/]
+Q[I—ZFtl+ ¢
£

sn- / _Rat  _ Ft ] +
+ L “‘[ €. — ¢ :
422__"”." * I‘_ _ﬁi—‘

l L7 fne _ K2, X}
+ 2 é.fﬂm———E[ l‘°— e ! (o)

(Cf. R. T., p. 83, Eq. 99) /- Poke
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II. Solution of Radilative Transfer for Coupled Resonant or Fluorescent

Lines in the Presence of Continuous Absorption

If continuous absorption coexists with the selective resonant sbsorp-
tions, equation (8) will be modified (Soboutl, 1962) to

alIl(t,'/l-)

dt’ . . s My
- B [Latpods B Louthe P
m=z, -’ ™=y

-

(45)
where t', km' and Kiare newly defined using the line absorption coef-

ficients, !5!, (J{== 1L, 2, ..., s) and continuous absorption coefficients,

02}(=l)2)'--)s)by‘

s Z (K, +Om )
= 0 (Mot (zrdz s 2z T " ¢
mz=) Y Z 1.2'.","* ’ (46)
Fu = > o : (47)
and Z{}lu'fo)n)
/‘; = ﬂ§£74-¢{(
2. (Rp+ds) ‘ (48)

It can be shown tﬁak this planetary Milne-Eddington equation can be
converted to the standard form, Eq. (8) by transformetion of variables and

constants., First of ell, we put
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)
B,’ Re - (49)

N
I
(N

(50)

I
\

X k' 1,

m\

Ie'(z‘f/ﬂ) = £ I, (¢, p) (51)
and
Q’ 1,4 ) = Zfsf‘Jr (t"/l)
e (L. 1) = K, Ve
(52)
Equation (49) may be compared with Eq. (2) of Chamberlain and Sobouti (1962).
Now, it will be observed that Eq. (45) i1s rewritten in terms of the

above quantities as

aL/(t]p)
,e /
- (t =
/b ' 6‘t, s ’ /a; /‘) s _ Z!;t /
_ _2.:.2/(,./,1 ey du's By ML € P
(53)

This equation has exactly the same form as Eq. (8) which 1s derived
for an atmosphere without continuous absorption, if the variables and con-
stants with & prime in Eq. (53) correspond to those without a prime in Eg.

(8), and &, to %l . This result means that all the "monochromatic"
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relations developed in the previous section, for example, equations (Lke, b)
remain valid with the above new veriables and constants even when allowing
for the existence of continuocus absorption.

Therefore, solutions are first obtained in this new variable system
and then they are converted to the quantities of the real radiation field

by referring to (49) - (52).

ITTI. Line Intensities in the Single Scattering Approximation
The results of Sec. I can be reduced to simpler forms in cases where
either the albedos of the "resonant™ components are small, or the total
optical thickness 1s small. 1In both cases the solutions have the same form
as (lla, b) where {l (t) 1s approximated by
e S, o -2t

Jyt)=8yJce> = B, PN )

e (54)

This aspproximation corresponds to having

V., >0, ad b=@a<=Lls—>0,

in (44e, b). Accordingly we have

& ;‘u __(é"+§()t,+&t

_ Besaf, Lo [(ROREME]

Lyt ) f,gi. i /+L—/":’"[e ¢ (558)
7L

A ¢
s / -—t t ]
Lt-p = @Zﬁﬁ"’ % [e Fol e (550)
ﬁl M=) /-,ﬁ"—;‘:
2 Ky
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(cf. R. T., p. 217, Eq. 60)

Although the solutions for both % &)<</ and t_ << 1, have the same
form, the reason for the approximation p.rocedure is different in the two
cases. In the former case, the above solutions can be considered as the

first order spproximation of I Yy (t, /L) when it i1s developed 1n power

serles of El as

) ()
-Z;(z‘,/l-) = Za(t,/b)a',;ﬂ‘ ({,/t)za'gz&. + |
(56)

On the other hand, the latter case is based on the assumption that

rl)
: | e A
/ 4 ’ ,
-2-‘- Zﬁn I,, (t,,ll—)d/l « Z: ;m-f; € /"
mer N e g (57)
for small values of to.
Quite often the total intensity of line component is the measurable

quantity instead of the "monochromatic™ intensity, Here the line intensity

is defined by

)’ .
Jé(t,/x.) = fll (tp)dy
Ltne (58)
Integration of (55a, b) over ¥ can be done easlly, when all the line

components have the same Doppler ebsorption contour

- 2
w(v-y,)

y c ,
= 2
%e N e Yo
(59)
wherexc and )'J-c stand for the absorptlon coefficient at the line center of

the J~th component and the mean wave number of the whole system respectively,

and )lb'is the effective Doppler width defined by
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(60)
with

U

0
B
|

(6r)

the most probable veloclty of the fluorescing pasrticles. In fact, one can
write down the integrals of (558, b) in terms of the curve of growth function
(Cf. Landenberg, 1930; Struve and Elvey, 1934; Cowan and Dieke, 1948;

Uns81d, 1955; Penner, 1959),

(62)

Tne result of the integration of (55a, b) over wave number is found to be

U s
\j£!¢fif; JVﬁL‘) = ))i; iés ¢2: 7‘;,’*;” / X

m=z} ‘ /+_E.f.ﬁ
fﬁ,ﬁﬂz
kx, he)y % m
el fr-g-20%9)
and
_ P /
\j-((t'"/“) = Yp ﬁl élfmf'm o e X

(63b)
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In deriving (638, b) 1t is assumed that fm's are constant across the
lines. This assumption will be usually fulfllled provided the incident
flux is either continuum or a well-broadened line (Chamberlain and Sobouti,
1962). The right hand side of (63b) has a singularity when

/“/k[ = /‘“‘o/‘m ,

In this case, one term of the singularity in (63b) should be replaced as
Ll — ke, R=t)
/__Z‘m Z W -Z —;(:t =

L7 4
d7(¥)
(j ]l: /“E:‘et.

IV. Line Intensity in the Atmosphere of Large Optical Thickness

I\

(64)

1. Resonant Intensity

In the semi-infinite atmosphere, the terms of (4la, b) which increase
infinitely at to = o0 should be excluded; so thét b and L_g4 are put equal
to zero. Accordingly, the other sn constants@ and L +¢ CBD be determined
from the boundary condition (L42a) alone. It should be noted that these
are no longer the functions of wave number, provided all the line com-
ponents have the same abgorption contour.

This kind of simplification for the semi-inflnite atmosphere may be
applicable also for the scattering from the atmosphere with large optical
thickness. In this spproximation, the "monochromatic” intensity 1s given
by equations (4ha, b).

Integration of (4h4a, b) over Yy ylelds the line intensity




B s 20
7}'
2 ! £\, R\ [ A
+”Z="fm1cm7w —':”';;[Z( F’f —,—;’)t. * )‘Z (/—;':‘ﬂ}@a)
end /‘3‘[ ’
Jp2p) = %‘- ”D'{QZ(&t)+

(65D)

2. Fluorescent Intensity

The fluorescent intensity can be deduced ag the special case of
(658, b) where kg =0, B8ince Q= 0, 1f any fluorescent line -exists,

it is given by

/| 2L
J(2p) = ByYy o {Z ;.f [Z(f.,z‘.)—Z(k’.:t}] +
o=

Stonp 2k -2(50])
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and

sn L“
St ) = Byvl =4 S =27 (kt) +
/‘ ol= kd

+ 2 fn’ym /“. Z ( ﬁt) } ( Fluorescent /:'ne:).
m=t 1

(66b)
3. Line Intensity at Large Optical Depth

When both the conditions, to, tH»1l, and to - t» 1 are satisfied,
all the terms except those with Q vanish in (65a, b) because the Z-
function in this case is apparently constant, being independent of 1ts

argument. Therefore, we have for large extent of /L B

Jpt 1) = Jplt.p) = %—-vDQZ,,

(67)

where Zo stands for the average value of Z(y) and actually may be set
equal to Z(kl to). This result means that in the conservative case, the

radiation field tends to be isotropic as the depth increases and the relative

S
intensity approaches E‘é . For non-conservative cases ( Z &In </
L S me
or k =0 (r ¢ 8) though 3, 8, = / ), Q is equal to zero, so that the
Pesy

"regsonant™ intensities vanish at large opticel depth wherease the fluorescent

intensities have finite values as

\Z!().‘, +/L) —> 0

Id

(Resonant Lines) , (68g)

and sn

Ltp) = Ben 2 R r\ Z,

(Fluorescent Lines, ty t >1). (68b)
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where Zo again stands for the average value of Z(k, t) and Zl( km/fto t).
These results show that at large optical depth the radlation 1s entirely

pumped into the fluorescent lines.

V. Effect of Cascade Transitions

1. Preliminary Considerstions

As mentioned in the introductory part of this paper, sometimes it
happens that the upper state of a coupled fluorescent system colncides with
the final state of other fluorescent system (Brandt, 1959). In this case,
the atmosphere has an active source inside of 1t. Let us discuss the
practical treatment of such an effect on the fluorescent system. The

grand source function (22) is then replaced by

Tty = Jao+ Jo + J)

(69)
where J°(t) and J°(t) are defined as before (Eq.'s 13 and 14), and Ji(t)
stands for the active source function inside of the atmosphere. However,
because of the linearity of Eq. (20) the complete solution will be the sum
of the two solutions which are solved for the external and internal sources
respectlively. Therefore, we msy put Je(t) & O 1nitially. First we look

for the solution for an active source of the form

: -k
J(#t) = gthle”  (02h<+oo)
(10)
The radiation field, due to this grand source funetion, will be

governed by the linear differentisl equations,
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LIgy 5 4.5 a1 Pakd
- —= + ﬁl-[(‘-= —-Z ~ o Ly +U,;/£}e,.

¢ dt 2 m=; J:-n

(T1)
The particular solutions for this set of differential equatlons can be

obtained in quite an analogous way with that adopted in Sec. I. They are

found to be
~vik) £
. Nl 4
'Z;‘&(&) - ﬁ_g / + /"i e
f'e / (12)
with
| /
——7/(‘) = g +n

/=282, Z 2 (73)
AN
The solutlons of the assocliated homogeneous system Pe again given by

Eq. (31), but the constants b(k), Q(k) and Ly (k)'s must satisfy the

boundary conditions, corresponding to (k42a,b),

[ Lesi] L
ﬂ!' sact d(‘) "V/(,
4R T+ QUA) + ), T pk T T =0

teD =0 ;

£ z=Snt] N ﬁ_e !l = /‘—‘_-;—é /
. L
(Tha)
and
[I‘(,"i]'t‘—'a =0 , __‘to

&yt T e

‘ ﬂ + ] -+ —_— = 0
HA) (To+ fl)’rQ(‘) d-%‘n-rl ]+ /—2!‘ ‘/+ E.':_i— 7
L ,‘e

(C'= T/, 2, "";;-‘4:;;’) j=/- 2; ., S).
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Then, the source function and the specific intensities corresponding to

(43) and (44e, b) are respectively,

S~ —ht t
Jyt) = 8, Juy) = ‘4{()& Qi)+ 2, Laki €4 TV & l (75)

e —~fney

ﬁgzt,—,t)
] 4

L ck; t.+p) = ;“‘{M} (;‘*I} (, +/tj,,
lg/t,—t/ }

[—-ﬁlt ;('!*l-‘)t+£l ]4—
rha :

#,

e /4
+ /{‘)7{‘) / - [ th—— p (}z -f‘)to + zt }} (T6a)
/ + ‘ )

and y A

+ Q(ﬁ)[,_ e

v S Lk —

s=-Sht/ / +

.7,
Il(i,'t,"‘/“) = -&{_‘/i)[t_ %(/—-c-/:t) ] +

£ |
+ QE) [/—E-/é!t] *
v 2 Lutk)— At oHe )
o= ;- /_:_-'
t Jik)VIR) ,_J-——— [ 2 —RE_ g,’%t]
fz

" (760)
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Now 1t may be seen that so far as mathematical procedures are concerned,
there 1s no difficulty in extending the theory to an arbitrary distribution
of an active source function, if it is given & priori, since any distribution

of source, J(t) can be written as

o

Jet) = | pik) P

AR

h (77)
where g(k) is the Laplace transformation of J(t), i.e.,
e+ 00
/ R
Jikl = — | e Jdt
RATre ,

Q-1 %0

(78)

In fact, the solutions for this source distribution will be obtained
by integrating the solution for g(k) over k.

2. égg?oximation in the Treatment of Cascade Transition

Suppose the coupling resonant and fluorescent system’Xﬁ;?A?,
(m=1, 2, ..., 8) whose upper state Ap is also populated by the other
fluorescent systems, Xn;:ﬁBq—v.Apg (n=1,2, veey B3 =1, 2, sos, T),
which are excited by the incident fluxes fqn; (n=1, 2, oo, B3 ¢4 =1, 2
..., ), (Cf. Fig. 3), If there is no reaction from the former system to
to the latter, the radiative quantities for the latter systems may be
approximated in the treatment as developed in Sec. I. The source functions

for transition q9»p of each system may be written as

A

| W, -
Tty = B, ,%Lll’e‘” f +,,Z"t";'ﬂ:-‘ P T

’
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where every quantity is specified by its corresponding trensition. Then,.

the source function for the ¢-th component of the XE;QAP system due to

this cascading is
it = By LTy X

kot LT
< /’ZL” e)lf i r+2_,;"7§"73" e (e %

(80)

where
'_ f:: Hpm (81)

is the ratio of optical thickness of cascadiﬁg and cascaded systems. As
stated in 8ec. V. - 1, there would be no necessity to consider the popu-
lation of ﬁp from Xﬁ.by direct excitation due to external sources, since
the final solutions will be obtained by the simple summation of the two
independent solutions, one for the external source and the other for the
cascede populetion.

Therefore, one can assume that

= =1 ces
fpm = 0, (m )y 2 ) 5) (82)

Under this assumption, the equations of radiative transfer in the

n-th approximation are



ol

- . f
fi att, * Al
- 2 S 4 ,
g 3‘5?4*3‘91%/ {f:“zf“z/’
A k.
"[ Lyp t’+2:f, BN e " F e /’]}

(83)
By meking use of the general treatment of the previous parsgraph,

they are solved &as

__16 t
. - L f
Toe o B g ety oo o5 Lee
A ile#(h 4’) ’+£" L LR
.
s - -)"faf'tf
20,8, 2 L,/ +
‘rc
,L__L
2 Jf zPZJﬁ"ftz'Yl"/ﬂ [ Y
)+ ,/qih!f‘li"
/"c"/d
(8L)
where
/
Ly = p- Y
Y /-ZE,zZ Z ’

T , 2
L gy, __.(_Z‘Z_A&t_’_llf. (85)



and

x»
I

I - ,
— - %
I~ 28y, ,
4 sz , /‘ﬂgﬁfg._g)‘
Fokpe

~

(86)
The constants in (84) bp Qb and Lpy can be determined from the boundary

conditions

(87a)

and

[If(,-u’ ]

] = 0 .
=tp,

(87p)
Whence, the averasge intensity ng(tp) and the specific intenslty may be

deduced respectively to be

— % T
J-ﬂ[ff) = Efl{"'f’tf'*af" gLf‘ e a ,+

5™ ~ Ny, Ry T
*?llf”zr[% Lp o 0T T+

Xgp Fyn tp
, (88)

t .25 ﬁ%r” 1?3;*)/ " /;” ;- Vol
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VI. Numerical Exemple - (0I)1302-4-6A Deyglow

An example of s coupled resonance system is found in the ultraviolet
dayglow of atomic oxygen, (0I)1302-4-6A. This triplet emission 1s be-
lieved to originate from two different sources, ramely

1. Direct resonance of solar (0I)1302-4-6A emission,

0(21o1+ 3 ) + h (1302-4-6) == 0(2p°3s 8, ); (90)
2,10 1
2. Cascade transition initiated by solar Iyman-/y emission,

o(eplL 392) +h¥ (L/, ) = o(2p33d 3p ) —»

3 3,2,1
3
N ‘ o(2p”3p P2,l,‘0) + ho (11260),

(91)
1 O(2p]+ 3P2,1’O) + h (1026-7-8)
o(2p%3p 38, , ) = (20338 38)) + n @ (BUkE) —»
)=
- O(2p)+ 3P2,l,'o) + h9 (1302-4-6) . (92)

The latter mechanism was originally suggested by Bowen (1947) for
astrophysical interest and was studied by Brandt (1959) in connection
with the (0I)11260A- and 8)+lb6A_- dayglow. Since solar (0I)1302-4-6 and
Lymanifg emiggions have intensities of the same order of magnitude as
ghown in Table I, both the mechanisms (1) and (2) will contribute to the
formation of (0I)1302-4-6A dayglow. Albedos, populations in the ground
states specific sbsorption coefficients and optical depths for systems

(1) and (2) can be calculated with the aid of the relations,

| o
(<. re fon
met Jy m (93)
and
t= Zu N,.z)

(94)
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with
o)
Nowoz) = n(0 z)dz,
z (95)
/ kT — ;
)Q;' = 4/6;.)5’ = 4{&/4!‘ )41 ’

’ (96)
and E? the relative populations in each of the ground states. The
albedos are calculated from the relation

3, = , (£=1,2,3),
where £, = f, = f3 and g 1 ‘b'hy
lator strengths are tabulated in Table III.

Hegeneracy of each level. The oscil-

The optlcal depths for the systems (1) and (2) are then computed

from
t = §af(3PJ - 381) - 5.33% x 10" N(0, 2),
t(Irg) = z:?(3P2 - 3DJ) = 1.06k4 x 10'1” N(0,z),
J
(T = 800°K) | (91)

The absorption due to molecular oxygen will prevent the Lyman7ﬁ
and (0I)1302-4-6A radiations from penetrating lower than the 100 km
level. The values of optical depthes for these radiations are respect-

4 and 9.87 x 10™* at 100 km. Therefore, the earth's

ively 1.97 x 10V
atmosphere is optically thick for these radiations (Table IV).

The line intensities of (0I)1302-4-6 A dayglow are then obtained
by means of direct application of the approximation procedures developed

in sections IV and V. Figures h-a, b, ¢ and d show the line intensities
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of 1306A, 1304A and 1302A components for unit inputs of solar 1306A, 13044,
13024 and 1026(L (4) A radiations respectively in the conservative case as
observed looking up (/l= -1.000) vhen the solar radiation 1s straight
down. These curves are obtained for the first approximation in the
source function (n=l). Because of the linearity of the transfer equations
wilth respect to incident radiations, the actual altitude distribution will
be a linear combination of the curves, the combination constants being

determined by the relative amounts of incident fluxes.

VII. Discussions

At the top and bottom of the scattering atmosphere, the intensities
deduced from the quadrature approximation, (4ka,b) will approach the exact
values which the rigorous theory provides in terms of generalized H-
or X- and Y- funetions. The proof 1s rather complex but fundamental
(cf. R. T. III 26-5 and VIII 59-1). For example, Sobouti's generalized

H-function can be derived in the n-th approximation as

M = (A ks 67(X+ —))
(fapa - ) Zf(/-f i) ’ (98)

Then, diffusely scattered intensities emerging from the top of semi-

infinite atmosphere are given by

Il(o, +/") = )—L’Z ,5:‘[”(/1,/‘0)7[’-
- (99)

where S{m( /‘ /',,) is one of the elements of & scattering metrix defined by

4

f

P H (k) H Ro /)
'Slﬂ {/‘,/‘o) '—'= Jl"" 2 ‘:/ , (100)

_’. w——
> /%
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Rational representation of generalized X- and Y- functions will be derived
in quite an analogous way to R. T. VIII 59-1.

The foregoing discussione on coupled radiative transfer problems are
based on the assumption that the scattering by fluorescent particles takes
place coherently at the same wavelength with the incildent radiation. The
Doppler incoherency due to motion of fluorescent particles, as estimated
by Henyey (1940), may give a modification to the theory of radiative trans-
fer especially in an opticaliy thick atmosphere. It would be worth noticing
in this connection that the theory of coupling in gections I and IV can be
extended to the case of Doppler lncoherent effect where the wavelength shift
in the scattering process can be regarded as a "continuous" coupling of
radiation of the incident vavelength to that of the emergent wavelengths.

In order to see such an effect readily, one cén conslder the line feature

in the Doppler core. As shown by Jeffries and White (1960), spectral dis-

tribution of scattered radiation is approximastely Gaussian in the Doppler

core, being independent of the inclident frequency. In th#s approximation,

the isotropic equation of transfer for é single component system is written
- X 2

dI (t,_lf)_* ZI Ix('tzf‘) =
AT at

—

+/ 2 )
= _Q__C__ —Lfd I{le.lz(t b').(z'.'.
4/7r 2 —I~/‘ —o0 25/‘

as

, LI 2 te®
_z ——x’ -_— ’
+ D¢ e e I dz’, (101)

-

Being analogous to the transition from Eq. (8) to Eq. (20) in the
radiative transfer equations, Eq. (10l) can be substituted for by an
equivalent set of linear equations of intensities at finite equi-distant

points of frequencies, x = X1y Xy x3, cosy xér;Lamely,



a o
I < —ZP - 2~
_, dLp —% _ Béxe T 2 . - T .
g e T 2 T YT é,.ajjzj '
e 7‘:& He

(102)

This equation has exactly the same form as Eq. (20), i1f one compares the

symbols and constants of Eq.'s (20) and (102) in the following scheme:

f : l/ } <~ M P

z:': ﬁll -—XZ s *
BAEY

= b

f = fn.

’

{103)

while the role of 1 and J being unchanged. Therefore, the/line profile

can be estimated to an arbitrary degree of approximation with the same

in the conservative case, since

procedure as Se¢. 1. Especially
xt
Z Bdx e P y
=1 (104)
P VT
Eq. (102) has a set of particular integrals,
.. = Jl‘tél —#at
pFr = “ £y L
'3" )+ 'z‘: ) (1058)
e P

and

Ip,: R = const. (105b)
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Since the integral (lOSa) tends to zero at large optical depths, we have

for large values of t,

—
€ ,
Ix(f,-f/l) _ Q[ , —C-F(t.-t) ]
4 (106a)

and
2
-2

x — £
I tt,-p) = Q[I-—e ~ < ]

(166b)
Consequently, the spectral line will become flat and isotropic at large
optical depths. This effect is similar to the broadening of stellar
absorption lines by electron scattering (Mllnch, 1948). Then, the dayglow
emissions observed at large optical depths will have extended wings and
these wings may form a false continuum to the emission lines. In this case,

the measured line intensity msy deviate from the theoretical line intensity.
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TABLE I

SOLAR RADIATION DATA FOR (0I)1302-4-6 DAYGLOW

L;;' (o1)
Wavelength (A) 1026 1302 130k 1306 (or)

Total

Total flux of Touseyt 0.06 0.013 0.020 0.025 0.058

golar line in Johnson® | 0.2 0.02 0.03 0.0k 0.09

erg/cm?/sec

Total flux of Tousey’ 3.10 0.86 1.35 1.68 3.81

solar line in Johnson 10.33 1.33 2.0k 2.54 5.91

109 p/cm?/gec

7F 1n 109/cm?/ 1

sec/waye Tousey ™’ 0.0236 || 0.01L47 0.0227 0.0283 0.0659

number Johnson - 0.109 0.0226 | 0.0348 0.0434 0.101

7FC % in L Touseyl 0.0170 "0.00605 0.00930 | 0.0117 0.0268

109 p?cm?/sec Johnson® | 0.0568 |f 0.00925 | 0.0143 | 0.0178 || o0.0k15

1. Detwiler, C. R.,

1961.

Garret, D. L., Purcell, J. D., and Tousey, R.,

2. Johnson, F. 8., 1961

°
3. The effective width of the line is assumed to be 1lA.

4.  The Doppler widths of L-/# and (OI) lines are assumed to be
0.523 cm=l and 0.412 em™l
T = 800°K.

respectively, corresponding to
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TABLE II

RADIATIVE TRANSFER ELEMENTS OF (OI) 1302-4-6A RESONANCE SYSTEM

Transition Wavelength g n*/n k
381 - 3P0 1306.03 1 0.1111 0.0834 | 0.083k4
3sl - 3Pl 1304.87 3 0.3333 0.2845 0.2845
3sl - 3P2 1302. L2 > 0. 5556 0.6321 | 0.6321
TABLE III
OSCILLATOR STRENGTHS
Transition f Reference'
2pu 3P2’l’0 - 2p33s 3sl 0.0299 Kelly, 1963
2ph 3P2 - 2p33a 3p 0.01
4 3
2p 3P2 - 2p33d 3D2 0.0017 | Omholt, 1956
opt 3P2 - 2p°34 3p, 0.0001




-~ 44 -

TABLE IV

MODEL ATMOSPHERE FOR (0I)1302-4-6 RESONANCE SYSTEM

AND OPTICAL DEPTHS

Height n(0) N(0) T t t(Lﬂ )
(km) (em™3) (cn™2) (°K) Optical | Opticel
Depth Depth
100 1.70+12 1.85+18 200 9.87+4 1.97+k
120 1.80+11 3.Th+lT 380 1.99+4 4.00+3
140 5.60+10 1.72+417 560 9.17+3 1.83+3
160 2.52+10 9.768+16 700 5.2243 1.044+3
180 1.34410 6.15+16 82k 3.2843 6.5642
200 7.8049 L.12+16 9kl 2.20+43 k. ho+2
300 1.1749 9.7T+15 1445 5.2142 1.0b42
500 max 1.18+8 5.88+15 1500 3.1442 6.27+1
min 1.00+8 2.66+15 1000 1.k4242 2.83+1
1000 mex 5.82+5 3.79+13 1500 2.03+0 4, 05-1
min 4.73+3 1.82+11 1000 9.73+3 1.94+3

References:

Below 300 km: Chamberlain, 1961

Above 500 km:

Johnson, 1961
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Fig. 1 Diagram showing the radiatlive transfer problem for a
coupled resonance system.

Fig. 2 Transition disgram of a coupled resonance and fluorescent
system.

Fig. 3 Coupling of two resonance systems by a cascading
transition,

Fig. 4 a,b,c,d
Intensities looking straight up of (0I)1302-L-6A for
unit input of each solar (0I)1302-4-6A, and Ly g4
radiations incident normally downwards (units in IPD).
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